Identification

##### Fano variety 3-8

divisor from the linear system $|(\alpha\circ\pi_1)^*(\mathcal{O}_{\mathbb{P}^2}(1)\otimes\pi_2^*(\mathcal{O}_{\mathbb{P}^2}(2))|$ where $\pi_i\colon\mathrm{Bl}_1\times\mathbb{P}^2$ are the projections, and $\alpha\colon\mathrm{Bl}_1\mathbb{P}^2\to\mathbb{P}^2$ is the blowup

- Picard rank
- 3 (others)
- $-\mathrm{K}_X^3$
- 24
- $\mathrm{h}^{1,2}(X)$
- 0

Hodge diamond

1

0 0

0 3 0

0 0 0 0

0 3 0

0 0

1

0 0

0 3 0

0 0 0 0

0 3 0

0 0

1

Anticanonical bundle

- index
- 1
- $\dim\mathrm{H}^0(X,\omega_X^\vee)$
- 15
- $-\mathrm{K}_X$ very ample?
- yes
- $-\mathrm{K}_X$ basepoint free?
- yes
- hyperelliptic
- no
- trigonal
- no

Birational geometry

Deformation theory

- number of moduli
- 3

$\mathrm{Aut}^0(X)$ | $\dim\mathrm{Aut}^0(X)$ | number of moduli |
---|---|---|

$\mathbb{G}_{\mathrm{m}}$ | 1 | 0 |

$0$ | 0 | 3 |